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Mathematicians love puzzles—they love to play with numbers 
and shapes but often their love can turn to words and other areas 
that, at least on the surface, have little to do with mathematics. In 
this article we are going to focus on a very speci�ic kind of artistic 
wordplay (and its relationship to mathematics) called ambigrams. 
The word ambigram was coined by cognitive scientist Douglas 
Hofstadter from ‘ambi’ which suggests ambiguous and ‘gram’ for 
letter. Ambigrams exploit how words are written and bring together 
the mathematics of symmetry, the elegance of typography and 
the psychology of visual perception to create surprising, artistic 
designs.  Most of all, they are great fun! 

All right, let’s start with the example in Figure 1. Can you read it? 
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Figure 1. A 180-degree rotation ambigram for the word “Wordplay”





At Right Angles  | Vol. 2, No. 3, November 2013 29

Rotating the page you are holding will reveal 
something interesting. The word stays the same! 
In other words, it has rotational symmetry. 

Thus ambigrams are a way of writing words such 
that they can be read or interpreted in more than 
one way. Figure 2 is another one, an ambigram for 
the word “ambigram.”

Figure 2. A 180-degree rotation ambigram for 
“ambigram”

Incidentally, you may have noticed something 
interesting in these two examples. In the 
“wordplay” design each letter of the �irst half of 
the word maps onto one letter (w to y, o to a, and 
so on). Some transformations are straightforward 
(as in the “d” becoming a “p”) while others need 
some level of distortion to work visually (the w-y 
being the most obvious example). This distortion 
of course is constrained since whatever shape you 
come up with has to be readable as speci�ic letters 
in two different orientations.

Now consider Figure 2, the design for the word 
“ambigram.” There is a lot more distortion going 
on here. The “stroke” that emerges from the “a” 
becomes the third leg of the “m.” More interesting 
is how the “m” after the “a” actually maps onto 
two letters (“r” and “a”) when rotated. Isn’t it 
interesting to see that what looks like one letter 
becomes two when rotated? On a different note, 
the g-b transformation is of particular interest to 
the authors! Can you guess why?

Given that ambigrams work because of the 
speci�ic mappings of letters (either individually 
or in groups) to each other implies, that even one 
change in the letters of the word can lead to a very 
different design. Thus the solution for the word 
“ambigrams” (plural) is quite different from the 
solution for “ambigram” (singular). Note how in 
Figure 3, many of the mappings have shifted, and 

the natural “g-b” transformation that made so 
much sense in the design for “ambigram” has now 
shifted to a “b-a” transformation while “g” now 
maps onto itself. 

Figure 3.The fi rst of two ambigrams, for “ambigrams.” 
This design reads the same when rotated 180-degrees.

Another important aspect of why ambigrams work 
can be seen in Figure 3. Notice the initial “A” and 
the �inal “S.” In the case of the “A” the gap at the 
bottom looks exactly like what it is, a gap. On the 
other hand, when rotated 180 degrees, our mind 
imagines a connection across this gap – to make 
the topmost stroke of the “S.” How cool is that!
Rotation is not the only way one can create 
ambigrams. Figure 4 is another design for the 
word “ambigrams” –this time as a re�lection. 
This design has bi-lateral symmetry (a symmetry 
most often found in living things – such as faces, 
leaves and butter�lies). If you place a mirror—
perpendicular to the page—in the middle of 
the ‘g’, the right half of the design will re�lect to 
become the left part of the word. 

Figure 4. Another ambigram for “ambigrams” this 
time with bilateral symmetry

Designs such as these read the same from 
right to left. This is a feature of a Palindrome. A 
palindrome is a word or a sentence that reads the 
same forwards and backwards. For example, some 
believe that the �irst sentence ever spoken was:

Madam, I’m Adam

Notably the response to this palindrome was also 
a single word palindrome:
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Eve

Even longer examples of palindromes can be 
created. Here is, for instance, a palindromic poem. 

I think

a lot

about

very little

and care

very little

about

a lot

I think

Reverse the sequence of lines (from bottom to 
top) and you will have the same poem! Here the 
palindrome is at the level of a line of the poem. 
The �irst line is “I think” and so is the last line. 
Similarly, the second line from both top and 
bottom is “a lot”. The poem is symmetric about 
the phrase “and care” which comes in the middle 
of the poem. The symmetry is very similar to the 
mirror symmetry mentioned earlier, though not 
quite the same. 

Limiting ourselves to just mirror symmetry, 
we can �ind many examples of its relevance to 
mathematics. For example, consider an isosceles 
triangle, a triangle with two sides equal. It has the 
same symmetry as the design above. 

It is possible to prove that the base angles of an 
isosceles triangle are equal, just by exploiting this 
mirror symmetry? Here is a hint: 

An Isosceles Triangle

Looks in the mirror

And �inds itself un-reversed.

“My base angles are equal”

it says.

Visually this can be represented as a triangle-
ambigram for the word “isosceles”, see Figure 5.

Figure 5. An isosceles triangle that reads “isosceles” 
when refl ected in a mirror

Different types of ambigrams

Every ambigram design need not read the same 
word when rotated and/or re�lected. Figure 6 
is a design that reads “darpan” (the Hindi word 
for mirror), and “mirror” (the English word for 
darpan) when rotated 180 degrees.  

Figure 6.The word “darpan” (hindi for mirror) 
becomes “mirror” on rotation by 180-degrees

So far we have seen ambigrams with a vertical 
line of symmetry like the designs for “ambigrams” 
or “isosceles” having a vertical line of symmetry. 
Hofstadter has called this a “wall re�lection.” The 
other is a “lake re�lection” such as the example 
in Figure 7 – where the word “abhikalpa” 
(the Sanskrit word for architect) which has a 
horizontal line of symmetry. Mathematically 
speaking, a wall-re�lection is a re�lection across 
the “y-axis” while a “lake-re�lection” is a re�lection 
across the “x-axis.”

Figure 7. Ambigram for “abhikalpa”, an example of a 
lake refl ection
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Incidentally, the use of Hindi words in the above 
two designs brings up an interesting challenge. Is 
it possible to create an ambigram that can be read 
in two different languages? Here is the Sanskrit 
sound “Om” as traditionally written in Devanagri 
script. This design if rotated 90-degrees magically 
transforms into the letters “Om” in English!

Figure 8. The Sanskrit word “om”

Figure 9. The English “om” formed by rotating the 
Sanskrit “om” by 90-degrees.

Not all re�lection ambigrams have to be re�lected 
across the x- or y-axes. Consider this design 
(Figure 10), where the word “right” when 
re�lected across the 45-degree axis reads “angle.” 
(This  design was inspired by a solution �irst put 
forth by Bryce Herdt). 

Figure 10. A special “Right angle” made specially for 
this special magazine

Those who are familiar with tessellations will like 
the next kind of designs—space-�illing ambigrams. 
See for instance Figure 11, this design for the 
word “space” – where replications of the word 
form a network that cover a surface – in this case 
the surface of a sphere.

Figure 11. A space-fi lling ambigram for “space”

Here is an example of a rotational chain ambigram 
for the word “mathematics.” In chain-ambigrams 
a word is broken into two parts – each of which 
maps to itself. In Figure 12 “math” maps onto 
itself and the rest of the word “ematics” maps onto 
itself.

Figure 12. An ambigram for “mathematics”

Effective chain-ambigrams can be quite rich in 
meaning. Consider Figure 13. This example of a 
chain ambigram for “action-re-action” where the 
letters “-re-“ switch loyalty depending on whether 
you are reading the top part of the circle or the 
bottom.
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Figure 13. Ambigram for “Action-re-action”

Given this idea of breaking words into shorter 
ambigramable pieces, it is easy to create such 
chain-re�lection ambigrams as well—such as 
Figure 14 for the word “re�lect.” This design 
will read the same when you hold it up against 
a mirror (or peer at it from the other side of the 
page holding it up to a light).

A couple of other types of ambigrams are called 
“�igure-ground” ambigrams and “triplets.” A 
�igure-ground ambigram is akin to a tessellation – 
where the space between the letters of a word can 
be read as another word altogether. What do you 
see in Figure 15? Good? Evil? Can you see both? 
Can you see both at the same time? A good pun-
ya?

Figure 15. A Figure-Ground ambigram for “Good” and 
“Evil”

Mathematicians who love solid geometry will love 
triplets! A triplet is 3-dimensional shape designed 
in such a way that it casts different shadows 
depending on where you shine light on it. For 
instance the design below (Figure 16) is a shape 
that allows you to see the letters “A,” “B” and “C” 
depending on where you shine light on it. 

Figure 16. A triplet ambigram for “A”,“B” and“C”

Even seeing patterns in parts of a word can lead to 
interesting designs, such as the star-shaped design 
in Figure 17 for the word Astronomy. In designs 
like this one takes advantage of speci�ic letters to 

create visually attractive designs. The designer in 
this case noted that the letter “R” could be rotated 
60-degrees to make the letter “N.”

Figure 17. A star shaped ambigram for “astronomy”

Aesthetics, ambigrams & mathematics

Some mathematicians speak of what they do 
in aesthetic terms. The famous mathematician 
George Polya remarked: “Beauty in mathematics 
is seeing the truth without effort.” This mirrors 

Figure 14. A chain-refl ection ambigram for “refl ect”
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Keat’s famous line “Beauty is truth, truth beauty.” 
As Bertrand Russell said, “Mathematics, rightly 
viewed, possesses not only truth, but supreme 
beauty.” Figure 18 attempts to capture this idea. 

Figure 18. A design for “truth & beauty”, where 
Beauty becomes Truth & Truth becomes Beauty.

When mathematicians speak of beauty they 
usually talk of theorems or proofs that are 
elegant, surprising, or parsimonious. They speak 
of “deep” theorems. Mathematical insights that 
are not obvious, but explained properly seem 
inevitable. Finally mathematicians delight in doing 

mathematics, which often means solving problems 
set by themselves or by other mathematicians. 

Effective ambigram designers, in small ways, see 
the creating of ambigrams as sharing many of 
these characteristics that mathematicians speak 
of. The creation of ambigrams can be a highly 
engaging activity that can lead to seemingly 
inevitable and yet surprising and elegant 
solutions. In that sense, both mathematicans 
and ambigram-artists engage in what we have 
called “Deep Play”  (DP) – a creative, open-ended 
engagement with ideas through manipulating 
abstract symbols. We must admit, however, that 
our teachers have often considered what we do 
as being more TP (Time Pass) than DP (Deep 
Play!). We hope we have been able to give you 
some of the �lavor of the art and mathematics 
of ambigrams. In subsequent articles we will 
delve deeper into the mathematical aspects 
of these typographical designs, and use them 
to communicate mathematical ideas such as 
symmetry, paradoxes, limits, in�inities and much 
more. 
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In our November column we introduced the concept of 
ambigrams—the art of writing words in surprisingly 
symmetrical ways. Consider an ambigram of the word 

“Symmetry” (Figure 1).

Figure 1. A symmetric ambigram for Symmetry 

The design itself displays rotational symmetry, i.e. it looks the 
same even ��en rotated �y ͷ;Ͷ de�rees. In other words, it remains 
invariant on rotation. Figure 2 shows an ambigram for “invariant” 
with a similar property. 
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Invariance can also be seen in re�lection. Figure 
3 gives a design for the word “algebra” that is 
invariant upon re�lection, but with a twist. �ou 
will notice that the left hand side is NOT the same 
as the right hand side and yet the word is still 
readable when re�lected. So the invariance occurs 
at the level of meaning even though the design is 
not visually symmetric!

Figure 3. An ambigram for ‘algebra’ that remains 
invariant on reflection. %ut is it really symmetric"

In this column, we use ambigrams to demonstrate 
(and play with) mathematical ideas relating to 
symmetry and invariance. 

There are two common ways one encounters 
symmetry in mathematics. The �irst is related to 
graphs of equations in the coordinate plane, while 
the other is related to symmetries of geometrical 
objects, arising out of the Euclidean idea of 
congruence. Let’s take each in turn.

Symmetries of a Graph
First let us examine the notions of symmetry 
related to graphs of equations and functions. 
All equations in x and y represent a relationship 
between the two variables, which can be plotted 
on a plane. A graph of an equation is a set of points 
(x, y) which satisfy the equation. For example, 
x2 + y2 = 1 represents the set of points at a distance 
1 from the origin—i.e. it represents a circle. 

Let (a, b) be a point in the �irst quadrant. Notice 
that the point (–a, b) is the re�lection of (a, b) in 
the y-axis (See Figure 4a). Thus if a curve has the 
property that (–x, y) lies on the curve whenever 
(x, y) does, it is symmetric across the y-axis.   Such 
functions are known as even functions, probably 
because y = x2, y = x4, y = x6,… all have this 
property. Figure 4b shows the graph of  y = x2; this 
is an even function whose graph is a parabola.

Similarly, a curve is symmetrical across the origin 
if it has the property that (–x, –y) lies on the curve 
whenever (x, y) does. Functions whose graph 
is of this kind are called odd functions, perhaps 
because y = x, y = x3, y = x5,… all have this property. 
See Figure 4c for an odd function.

A graph can also be symmetric across the x-axis. 
Here (x, –y) lies on the curve whenever (x, y) 
does.  The graph of the equation x = y2 (another 
parabola) is an example of such a graph. Can a 
(real) function be symmetric across the x-axis?

Figure 5 shows a chain ambigram for “parabola”. 
Compare the shape of this ambigram with the 
graph in Figure 4b. The chain extends inde�initely, 
just like the graph of the underlying equation! 

Figure 5. A parabolic chain ambigram for “parabola”

Figure 4a. The point A (a, b) 
and some symmetric points

Figure 4b. An even function: 
y = x2

Figure 4c. An odd function: y = x3

Figure 2. An ambigram for “invariant”  
that remains invariant on rotation 
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The ambigram for “axis of symmetry” (Figure 6) 
is symmetric across the y-axis. �ou can see a red y 
as a part of the x in the middle. So this ambigram 
displays symmetry across the y axis. At the same 
time it is symmetric across the letter x! 

Figure �. The a[is of symmetry� ,s it the y-a[is or the ["

Another possibility is to interchange the x and y 
in an equation. Suppose the original curve is C1 
and the one with x and y interchanged is C2. Thus 
if (x, y) is a point on C1, then (y, x) lies on C2. By 
looking at Figure 4a, convince yourself that the 
point (b, a) is the re�lection of (a, b) in the line y 
= x, the straight line passing through the origin, 
and inclined at an angle of 45° to the positive side 
of the x-axis. Thus the curve C2 is obtained from 
C1 by re�lection across the line y = x. If C1 and C2 
(as above) are both graphs of functions, then 
they are called inverse functions. An example of 
such a pair: the exp (exponential y = ex) and log 
(logarithmic y = ln x) functions (Figure 7). 

Figure 7. Inverse functions are symmetric across the 
line y=x.

Figure 8 is a remarkable design that where exp 
becomes log when re�lected in the line y = x.  

Figure 8: Exp becomes Log when reflected 
across the diagonal line!

A great example of an inverse function is the 
hyperbola y = 1 / x, de�ined for all non-�ero real 
numbers x (Figure 9). Its inverse is obtained 
by interchanging x with y. But x = 1 / y can be 
written y = 1 / x. So it is its own inverse, and thus 
symmetric across the line y = x. 

Figure 9. The symmetrical graph of the hyperbola. It is 
its own inverse. And it’s odd, too!

of symmetryof symmetry
arithm

ar
ith
m

onential

on
en
tia
l



At Right Angles  | Vol. 3, No. 1, March 201428

The ambigram for “inverse” in Figure 10 is 
inspired by the hyperbola. 

Figure 10. An ambigram for the word “inverse” 
shaped like a hyperbola. 

It is symmetric across the origin and across the 
line joining the two S's.

Seeking congruence
Another type of symmetry consideration arises 
from the notion of congruence in plane geometry.  
Two objects are considered to be congruent if one 
object can be superposed on the other through 
rotation, re�lection and/or translation. 
Figure 11 shows an ambigram of the word 
“rotate”.

Figure 11. An ambigram for “rotate”. What happens 

when you rotate it through 180°"

This leads to the question: if we can rotate “rotate” 
can we re�lect “re�lect”? Figure 1ʹ is an ambigram 
for “re�lect” that is symmetric around the vertical 
line in the middle. 

Figure 1�. An ambigram for “reflect.” :hat happens 
when you hold it to a mirror"

Finally, the third operation is translation. An 
example of this symmetry is shown by the chain 
ambigram for sine in Figure 13. 

Figure 13. A sine wave ambigram. It displays 
translation symmetry.

The sine function satis�ies many symmetry 
properties. Perhaps the most important of them 
is that it is periodic, i.e., if you shift (in other 
words, translate) the functions by ʹɎ, then you get 
the same function back. In addition, it is an odd 
function, and the ambigram is both periodic and 
odd.

One can of course combine these transformations. 
This is best understood by looking at the 
symmetries of an equilateral triangle (see Figure 
14) involving both rotation and re�lection.

Figure 14. The 6 symmetries of an equilateral triangle.
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In conclusion
Clearly we have just scratched the surface of the power of symmetry as an idea in mathematics. The 
philosopher Aristotle once observed that, “the mathematical sciences particularly exhibit order, 
symmetry, and limitation; and these are the greatest forms of the beautiful.” We agree with Aristotle, 
but perhaps we would have said “arts” instead of “sciences.” In our next article, we will continue to use 
ambigrams to explore more beautiful mathematical ideas. 

Our last article had a secret message. The �irst letter of each paragraph read: “Martin Gardner lives on 
in the games we play”. This is our homage to Martin Gardner whose writings inspired us when we were 
growing up. This article has a different pu��le (see Figure 16). 

Figure 1�. &an you translate this hieroglyphic code" The answer appears below.

The 6 symmetries of the equilateral triangle are 
all found from two fundamental operations: (a) 
rotation by 120°Ǣ and (b) re�lection across the 
line passing through the vertex 1, and At Right 
Angles to the base of the triangle. Figure 15 shows 
ambigrams for the word triangle and pentagon. Do 
they display all the symmetries of the equilateral 
triangle and regular pentagon (respectively)?

Figure 15: Ambigrams for “triangle” and “pentagon” 
showing rotational symmetries.

ANSWER TO THE PUZZLE

We asked you to “translate” the code. Once you translate (i.e. move) the shapes and align them, you get the 
answer—the word “Translate.” An example of translation symmetry!
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Punya Mishra  
Gaurav Bhatnagar The Argentinian author, Jorge Luis Borges, often wrote about his 

fear of infinity—the idea that space and/or time could continue 
forever. Though Borges’ response may appear somewhat 

overblown, who amongst us has not felt a frisson of excitement when 
thinking of the infinite and our relative insignificance in front of it. 
Borges’ quote of reality being a dream within a dream within a dream 
ad infinitum reminds us of the hall of mirrors effect—the seemingly 
infinite reflections one generates when one places two mirrors in front 
of each other—the same object over and over and over again. 
This idea of infinite reflections can be seen in the chain ambigram in 
Figure 1 for the word reflect. In this design the “RE” and “FLECT” are 
written in a mirror-symmetric manner, which means that if we repeat 
this design over and over again it will read the same when held up 
against a mirror. (For a different ambigram for reflect, see Introducing 
Symmetry, in the March 2014 issue of At Right Angles). 

Figure 1. An ambigram of “reflect,” reflecting the  
infinite reflections in a pair of mirrors

Self-Similarity 
You have wakened not out of sleep, but into a prior dream, and 
that dream lies within another, and so on, to infinity, which is 
the number of grains of sand. The path that you are to take is 
endless, and you will die before you have truly awakened  
— Jorge Luis Borges  

Of Art and Math 
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This idea of repeating a similar shape (often at 
a different scale) over and over again, is called 
self-similarity. In other words, a self-similar image 
contains copies of itself at smaller scales. A simple 
example appears in Figure 2: a repeated pattern 
for a square that is copied, rotated and shrunk by 
a factor of 1/√2.

Figure �. A self²similar design 

Of course you can do this with typographical 
designs as well, such as the design for the word 
“Zoom” in Figure 3. 

Figure 3. A self-similar ambigram for =220 

Examining self-similarity leads to a discussion of 
infinity, iteration and recursion, some of the ideas 
we discuss in this article. 

Before taking a serious look at self-similarity, we 
present (see Figure 4) a rotational-ambigram 
of “self-similarity,” which is not self-similar. 
However, below it is another version of the 
same design, where the word “self” is made up 
of little rotationally symmetric pieces of “self” 
and similarity is made up of little ambigrams of 
“similarity” and, most importantly the hyphen 
between the words is the complete ambigram 
for “self-similarity.” So this leads to the question: 
What do you think the hyphen in the hyphen is 
made of?

Self similarity and Fractals 

Self-similar shapes are all around us, from clouds 
to roots, from branches on trees to coastlines, 
from river deltas to mountains. The idea of 
self-similarity was popularized by Benoit B. 
Mandelbrot, whose 1982 book “The Fractal 
Geometry of Nature” showed how self-similar 
objects known as ‘fractals’ can be used to model 
‘rough’ surfaces such as mountains and coast-
lines. Mandelbrot used examples such as these to 
explain how when you measure a coastline the 
length of the line would increase as you reduced 
the unit of measurement. Such convoluted folds 
upon folds that lead to increased length (or in the 
case of 3-d objects, increased surface area) can be 
seen in the structure of the alveoli in the human 
lungs as well as in the inside of our intestines. 
The volume does not increase by much, while the 
surface area increases without limit. 
Figure 5 is an ambigram of “Fractal” which 
illustrates Mandelbrot’s own definition of fractals: 
A fractal denotes a geometric shape that breaks 
into parts, each a small scale model of the original.

Figure 4� (Top) A rotational ambigram for 
“self-similarity.” (%ottom) The strokes in the 
first ambigram are now replaced by words. 
The “self” is made up of tiny versions of 
“self” and “similarity” of smaller versions of 
“similarity” (each of which are ambigrams of 
course). That is not all, the hyphen is made 
up of a tiny version of the entire design� 
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Figure �� A self-similar, fractal ambigram for “Fractal”

In other words, fractals are geometrical shapes 
that exhibit invariance under scaling i.e. a piece of 
the whole, if enlarged, has the same geometrical 
features as the entire object itself. The design of 
Figure 6 is an artistic rendition of a fractal-like 
structure for the word “Mandelbrot”.

Figure �. A fractal ambigram for “0andelbrot”  

Speaking of Mandelbrot, what does the middle 
initial “B” in Benoit B. Mandelbrot stand for? A 
clue is provided in Figure 7.  

Figure �. Puzzle� :hat does the % in “%enoit % 
0andelbrot” stand for" 

Answer at the end of the article.

It is clear that the idea of infinity and infinite 
processes are an important aspect of fractals and 
self-similarity. We now examine the concept of 
infinity typographically and mathematically. 

Infinity 
Infinity means without end, or limitless. 
Mathematically speaking, a finite set has a definite 
number of elements.  An infinite set is a set that 
is not finite. The word infinity is also used for 
describing a quantity that grows bigger and 
bigger, without limit, or a process which does not 
stop.  
Figure 8 has two designs for “infinity” subtly 
different from each other. Notice how in the first 
design the chain is created by “in” mapping to 
itself and “finity” mapping to itself. In contrast 
the second design breaks the word up differently, 
mapping “ity” to “in” and “fin” to itself.

Figure �. Two ambigrams for “infinity”.  
The first wraps around a circle and the 

second says infinity by word and symbol�
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The first design wraps “infinity” around a circle. 
You can go round and round in a circle, and keep 
going on, so a circle can be said to represent an 
infinite path but in a finite and understandable 
manner. The second design is shaped like the 
symbol for infinity! 
In keeping with the idea of self-similarity here 
are two other designs of the word “infinite”. 
In fact there is a deeper play on the word as it 
emphasizes the finite that is in the infinite. The 
two designs in Figure 9 capture slightly different 
aspects of the design. The first focuses on mapping 
the design onto a sphere while the second is a 
self-similar shape that can be interpreted in two 
different ways. Either being made of an infinite 
repetition of the word “finite” or the infinite 
repetition of the word “infinite” (where the shape 
that reads as the last “e” in the word “finite” can be 
read as “in” in the word “infinite” when rotated by 
90 degrees). 
Infinities are difficult to grasp and when we try to 
apply the rules that worked with finite quantities 
things often go wrong. For instance, in an infinite 
set, a part of the set can be equal to the whole! The 
simplest example is the set of natural numbers, 
and its subset, the set of even numbers.  

The set ℕ = {1, 2, 3, 4, ...} of natural numbers is 
infinite. Now consider the set of even numbers  
𝔼 = {2, 4, 6, 8, ...} Clearly, the set of even numbers 
has half the number of elements of the set of 
natural numbers, doesn’t it? 
But not so quick! Things are tricky when it comes 
to infinite sets. We need to understand what it 
means for two sets to have an equal number of 
elements. Two sets have an equal number of 
elements when they can be put in one to one 
correspondence with each other. Think of children 
sitting on chairs. If each child can find a chair to 
sit on, and no chair is left over, then we know that 
each child corresponds to a chair, and the number 
of children is the same as the number of chairs.
Returning to the natural numbers, each number n 
in ℕ corresponds to the number 2n in 𝔼 . So every 
element of ℕ corresponds to an element of 𝔼 and 
vice versa.
Thus though one set may intuitively look like it is 
half the other it is in fact not so! Our intuition is 
wrong, the sets 𝔼 and N have the same number of 
elements. Since 𝔼 is a part of ℕ, you can see that 
when it comes to infinite sets, a part can be equal 

Figure �. Two ambigrams for “infinite”, a play on the finite in infinite. ,s the  
second design an infinite repetition of the word “finite” or “infinite"” 
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to the whole. In fact, this part-whole equivalence 
has sometimes been used to define an infinite set.
Another interesting example where a part is equal 
to the whole, is provided by a fractal known as the 
Sierpinski Carpet.

The Sierpinski Carpet

The Sierpinski Carpet, like all fractals, is generated 
using the process of iteration. We begin with a 
simple rule and apply it over and over again.
Begin with a unit square, and divide the square 
into 9 equal parts. Remove the middle square. 
Now for each of the remaining 8 squares, we do 
the same thing. Break it into 9 equal parts and 
remove the middle square. Keep going on in this 
way till you get this infinitely filigreed Swiss-
cheese effect. See Figure 10 for the first couple of 
steps and then the fifth stage of the carpet.

Figure 1�. The 6ierpinski &arpet

Which leads to the question: What is the total area 
of all the holes? Here is one way of computing the 
area of the holes in the Sierpinski Carpet. The first 
hole has area 1/9. In Step 2, you will remove 8 
holes, each with area 1/9 th of the smaller square; 
so you will remove 8 holes with area 1/92  or 

 8/92.  In Step 3, for each of the smaller 8 
holes, we remove 8 further holes with area 1/93, 
so the area removed is 82/93.  In this manner it is 
easy to see that the total area of the hole is:

To see why, we use the formula for the sum of the 
infinite Geometric Series:

How crazy is that! The area of the holes (taking 
away just 1/9th of a square at a time) is equal to 
the area of the unit square! Thus the hole is equal 
to the whole!

This seemingly contradictory statement has 
inspired the following design—where the words 
whole and hole are mapped onto a square – with 
the letter o representing the hole in the Sierpinski 
carpet. Of course as you zoom in, the whole and 
hole keep interchanging. We call this design  
(w)hole in One (in keeping with the idea the area 
of the hole is equal to the whole of the unit square).

Figure 11. Fractal Ambigrams for “:+2/(” and 
“+2/(”, a (w)hole in 2ne.

The repetitive process of applying a set of 
simple rules that leads amazing designs like the 
Sierpinski carpet (and other fractal shapes) is 
called iteration.
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the simplest example of creating a self-similar structure using this process.  
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Graphical interpretations of iteration

The process of iteration can be used to generate 
self-similar shapes. Graphically, we simply 
superimpose the original shape with a suitably 
scaled down version of the initial shape, and then 
repeat the process. The nested squares of Figure 2 
is perhaps the simplest example of creating a self-
similar structure using this process. 
Essentially, such figures emerge from the repeated 
application of a series of simple steps—a program 
as it were, applied iteratively to the result of the 
previously applied rule. In this manner we can 
arrive at shapes and objects that are visually rich 
and complex.
Here is another, more creative, way to graphically 
interpret the idea of iteration.

Figure 1�� An ambigram of “iteration”,  
illustrating a graphical approach to a part can be 

eTual to the whole. 

At one level the first ambigram in Figure 12 can 
be read as a rotational ambigram for the word 
“iteration.” However if you zoom into the design 
(see zoomed figures below) you will see that each 
of the strokes is made of smaller strokes that in 
turn spell iteration.
In fact you can go down one more level and see 
“iteration” all over again. Theoretically we could 
do this forever, (within the limits of computational 
technology and visual resolution of screen, print 
and eye!). A similar idea is explored in the design 
of the word “self-similarity” (Figure 4) specifically 
in the design of the hyphen.
There are other fascinating examples of such 
iterative techniques, one of which we examine 
next.

The Golden Mean

Another example of a mathematically and visually 
interesting structure is the Golden Rectangle (and 
its close relative the Golden Mean). The Golden 
Mean appears as the ratio of the sides of a Golden 
Rectangle. A Golden Rectangle is such that if you 
take out the largest square from it, the sides of the 
resulting rectangle are in the same ratio as the 
original rectangle. Suppose the sides of the Golden 
Rectangle are a and b, where b is smaller than a. 
The ratio a/b turns out to be the Golden Mean 
(denoted by �). The largest square will be of side 
b. Once you remove it, the sides of the resulting 
rectangle are b and a  ̵ b. From this, it is easy to 
calculate the ratio a/b and find that it equals .

If you begin with a Golden Rectangle and keep 
removing the squares, you will get a nested 
series of Golden Rectangles (see the underlying 
rectangles in Figure 14). The resulting figure 
shows self-similarity.
You may connect the diagonals using a spiral to 
obtain an approximation to what is called the 
Golden Spiral. Figure 13 shows an ambigram of 
“Golden Mean”, placed in the form of a Golden 
Spiral inside a series of nested Golden Rectangles.

where ܾ is smaller than ܽ. The ratio ܽȀܾ turns out to be the Golden Mean (denoted by 
߶ሻ. The largest square will be of side ܾ. Once you remove it, the sides of the resulting 
rectangle are ܾ and ܽ  ܾ. From this, it is easy to calculate the ratio ܽȀܾ and find that 
it equals ߶   ାξହ

   Ǥ͸ ͺͲ͵͵ͻͺͺǥ. 
 
If you begin with a Golden Rectangle and keep removing the squares, you will get a 
nested series of Golden Rectangles (see the underlying rectangles in Figure 14). The 
resulting figure shows self-similarity.  
 
You may connect the diagonals using a spiral to obtain an approximation to what is 
called the Golden Spiral. Figure 13 shows an ambigram of  “Golden Mean”, placed in 
the form of a Golden Spiral inside a series of nested Golden Rectangles. 
 

 
 
Figure 13. A rotationally symmetric chain-ambigram for the phrase 
“Golden Mean” mapped onto a Golden Spiral.  
 

 
The Golden Mean appears in different contexts, in mathematics, in artistic circles, and 
even in the real world. It is closely related to the Fibonacci Numbers, namely 
    ʹ ͵ ͷ ͺ  ͵ ʹ  ǥ. Note that the Fibonacci Numbers begin with   and  , and 
then each number the sum of the previous two numbers. If you take the ratio of 
successive Fibonacci numbers, the ratio converges to the Golden Mean.  
 
The Fibonacci numbers are an example of a recursively defined sequence, where a 
few initial terms are defined, and then the sequence is built up by using the definition 
of the previous term (or terms).  
 
Recursion and Pascal’s Triangle 
 
Recursion is similar to iteration. While iteration involves applying a simple rule to an 
object repeatedly, like in the creation of the Sierpinski Carpet, recursion involves 
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Figure 13. A rotationally symmetric chain-ambigram 
for the phrase “*olden 0ean” mapped onto a  

*olden 6piral.

The Golden Mean appears in different contexts, 
in mathematics, in artistic circles, and even in the 
real world. It is closely related to the Fibonacci 
Numbers, namely 1, 1, 2, 3, 5, 8, 13, 21, .... Note 
that the Fibonacci Numbers begin with 1 and 1, 
and then each number the sum of the previous 
two numbers. If you take the ratio of successive 
Fibonacci numbers, the ratio converges to the 
Golden Mean.
The Fibonacci numbers are an example of a 
recursively defined sequence, where a few initial 
terms are defined, and then the sequence is built 
up by using the definition of the previous term  
(or terms).

Recursion and Pascal’s Triangle

Recursion is similar to iteration. While iteration 
involves applying a simple rule to an object 
repeatedly, like in the creation of the Sierpinski 
Carpet, recursion involves using the results of a 
previous calculation in finding the next value, as in 
the definition of the Fibonacci numbers.
Fractals are usually obtained by iteration. Thus it 
is rather surprising that the fractal of Figure 14, 
called the Sierpinski triangle, may also be obtained 
using a recursive process.
The triangle in Figure 14 is a binary Pascal’s 
triangle, where you use binary arithmetic (where   
0 + 0 = 0; 0 + 1 = 1 and, 1 + 1 = 0) to create the 
Pascal’s triangle. The recursion is as follows: Each 
row and column begins and ends with a 1. Every 
other number is found by the (binary) addition of 
numbers above it. The formula for the recursion is 

F (n + 1, k) = F (n, k – 1) + F ( n, k )
where F (n,k) is the term in the nth row and kth 
column, for n = 0, 1, 2, 3, ... and k = 0, 1, 2, 3, ... 
and the rules of binary arithmetic are used. In 
addition, we need the following values: 

F (n, 0) = 1 = F (n,n).
This recurrence relation is the recurrence for 
generating Pascal’s Triangle, satisfied by the 
Binomial coefficients.

Figure 14. The binary Pascal·s Triangle is also  
the 6ierpinski Triangle

Of course, you can guess how to obtain the 
Sierpinski Triangle by iteration. Begin with a 
triangle, remove the middle triangle in step 1, 
which will leave behind three triangles to which 
you do the same! And just repeat this process 
forever.
The fact that Pascal’s triangle is symmetric upon 
reflection, led to the design below (Figure 15)—
made up of row over row of mirror-symmetric 
designs for the word “Pascal” increasing in size 
as we go down the rows. We call this design “a 
Pascals Triangle” (a triangle made up of many 
“Pascals”) as opposed to “the Pascal’s triangle” 
(the triangle of or belonging to Pascal). (Author’s 
note: This design was created under psignificant 
work pressure. Can you guess why?)
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P81<A 0,6+5A, when not creating ambigrams, is professor of educational technology at 0ichigan 6tate 
8niversity. *A85A9 %+AT1A*A5, when not teaching or doing mathematics, is 6enior 9ice-President at 
(ducomp 6olutions /td. They have known each other since they were students in high-school.

2ver the years, they have shared their love of art, mathematics, bad Mokes, puns, nonsense verse and other 
forms of deep-play with all and sundry. Their talents however, have never truly been appreciated by their 
family and friends.

(ach of the ambigrams presented in this article is an original design created by Punya with mathematical 
input from *aurav. Please contact Punya if you want to use any of these designs in your own work.

To you, dear reader, we have a simple reTuest. 'o share your thoughts, comments, math poems, or any 
bad Mokes you have made with the authors. Punya can be reached at punya#msu.edu or through his 
website at http���punyamishra.com and *aurav can be reached at bhatnagarg#gmail.com and his website 
at http���gbhatnagar.com�.

Figure 1�. An ambigrammist·s approach to Pascals 
Triangle (as opposed to Pascal·s Triangle). :hat a 

difference an apostrophe makes�

In conclusion

We have explored many ideas in this article—
self-similarity, iteration, recursion, infinity, and 
attempted to represent them graphically even 
while connecting them to deeper mathematical 
ideas. We hope that like us, you too experienced 
many feelings when you encountered these 
ideas—feelings of wonder, amusement, surprise,

Figure 1�. An ambigram for “+idden %eauty”, whose 
beauty is not hidden from anyone� 

or the indescribable feeling when one finds 
something beautiful. We hope that these feelings 
make you wish to create something new, and 
perhaps dream up interesting things to share 
with your friends. As Borges eloquently said, “The 
mind was dreaming. The world was its dream.” 
There is a lot of beauty one can find, hidden away 
in the world of ideas. We close with an ambigram 
for “Hidden Beauty” in Figure 16, where the word 
hidden becomes beauty when rotated 180 degrees!

Answer to the Puzzle in Figure 7: The “B” in “Benoit B Mandelbrot” 

stands for Benoit B Mandelbrot… and so on forever! Here is another 

way of representing the same idea, that we call, “Just let me B.” 

Figure 1�. “-ust let me %�” A fractal design for %enoit % 0andelbrot 
designed to answer the Tuestion “what does the % in %enoit % 
0andelbrot stand for"”
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This is the �irst sentence of this article�

Clearly the sentence above is true (not highly informative but
true). Contrast this to the next sentence, below:

This is the �irst sentence of this article�

�ow the second statement, though identical to the �irst, is
clearly false.

Such sentences that speak about themselves are called
self-referential sentences, because they are, in a way, looking at
themselves in the mirror and describing themselves. Figure 1, is
a design for the word “reference” so it looks the same when
re�lected in a mirror.

Figure 1. Self-reference looks in a mirror. The word “self-reference” is
written in a manner that it looks the same when reflected in a mirror

(a wall reflection).

Keywords: Truth value, self-reference, paradox, axiom, theorem, consistency,
circular argument, proof, Zeno, ourobouros, ambigram
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Puzzle:
&an \ou deciSher these strange sTuiggles Eelow" +int� There are two words related to this article

Figure �. :hat do these sTuiggles mean"

�n this theory, the axioms are taken to be true.
�owever it is not necessary that the axioms are
Ǯtrueǯ in every context. For example, the axioms of
plane geometry are true in the ideali�ed plane,
but do not hold for the surface of the sphere,
where Ǯlinesǯ are simply great circles, which are
formed by the intersection of the sphere with a
plane passing through the center of the sphere.
�he e�uator, and lines of longitude are examples
of great circles on a spherical globe. �n this
geometry, there is no line parallel to the given line
from a point not on the lineǨ �his is because two
great circles always meet. �ut surely the geometry
of the sphere is e�ually “true” in the real world.
(�his kind of geometry, on the surface of the
sphere, is called �iemannian 
eometry).

�hat mathematical theories try to achieve is a
consistency, where by consistency we mean:
given the axioms and theorems proved within the
theory (using the rules of logic), none of the
statements contradict each other. �roofs are
means to convince ourselves that the statements
are “true” in the mathematical theory.

�n developing a mathematical theory, one needs
to be careful to avoid a circular proof. � circular
proof is when the proof of a statement uses the
statement itselfǨ Figure ͷ is a re�lection chain
ambigram of the word “proof” Ȅ a visual circular
proofǨ

� circular argument can be dif�icult to �ind. Say in
proving a statement � we use the truth of a

Figure �. $ Yisual reSresentation of a circular Sroof� This design reads the same Eoth at the front (as in red) or at the
Eack ³ or eYen when read in a mirror.

�ol. Ͷ, �o. 1, �arch ʹͲ1ͷ ∣ �t �ight �ngles ͵
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Figure �. $n amEigram for 3arado[� the suEMect of this column

Such selfǦreferential sentences sometimes lead to
paradoxes, and paradoxes are the topic of this
article. �s usual we use the medium of ambigrams
to communicate some of these paradoxical ideas
(see Figure ʹ for an ambigram of �aradox). �nd
we produce some graphical paradoxes of our own
for you to think about.

����e������l ��u��
�o understand what selfǦreferential statements
have to do with mathematics we need to get a bit
deeper into what mathematicians mean by the
words true and false. � mathematical theory
consists of a large number of statements. �here
are two special types of true statements in any
mathematical theoryȂaxioms and theorems.

For example, consider the development of plane
geometry. �e begin with certain axioms

(such as: given a line and a point not on the line,
there is exactly one line through that point
parallel to the given line). �xioms are all
considered to be true. �ow by following the rules
of logic, from �xioms one proves some other
statements that are called theorems. �f the proof is
valid, we say the theorem is true. For example, a
theorem is: �he sum of three angles of a triangle
is e�ual to two right angles. �ach theorem is
proved using the axioms, or the previously
proved theorems. Figure ͵ includes an ambigram
of the word “axiom” that is then used over and
over again to create an ambigram of the word
“theorem.”

�ach statement in this theory is either true or
falseȄit cannot be both, otherwise there will be a
contradiction. �nd we will see shortly that
contradictions are not allowed in mathematics.

Figure �. 5otational amEigrams for the words “a[iom” and “theorem”
 ² e[ceSt that the word “theorem” is Eoth an
amEigram and constructed from the multiSle a[ioms

ʹ �t �ight �ngles ∣ �ol. Ͷ, �o. 1, �arch ʹͲ1ͷ
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�owever it is not necessary that the axioms are
Ǯtrueǯ in every context. For example, the axioms of
plane geometry are true in the ideali�ed plane,
but do not hold for the surface of the sphere,
where Ǯlinesǯ are simply great circles, which are
formed by the intersection of the sphere with a
plane passing through the center of the sphere.
�he e�uator, and lines of longitude are examples
of great circles on a spherical globe. �n this
geometry, there is no line parallel to the given line
from a point not on the lineǨ �his is because two
great circles always meet. �ut surely the geometry
of the sphere is e�ually “true” in the real world.
(�his kind of geometry, on the surface of the
sphere, is called �iemannian 
eometry).

�hat mathematical theories try to achieve is a
consistency, where by consistency we mean:
given the axioms and theorems proved within the
theory (using the rules of logic), none of the
statements contradict each other. �roofs are
means to convince ourselves that the statements
are “true” in the mathematical theory.

�n developing a mathematical theory, one needs
to be careful to avoid a circular proof. � circular
proof is when the proof of a statement uses the
statement itselfǨ Figure ͷ is a re�lection chain
ambigram of the word “proof” Ȅ a visual circular
proofǨ

� circular argument can be dif�icult to �ind. Say in
proving a statement � we use the truth of a
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Figure �. $n amEigram aEout the relationshiS of math to truth

statements. For instance, on the one hand, we can
prove a statement such as: �here are an in�inite
number of prime numbers (as �uclid did over
ʹͲͲͲ years ago). �owever, if even one false
statement creeps into our mathematical universe,
we can also prove that: �here are only �initely
many prime numbersǨ �r that there are exactly
͵1͹ prime numbers. �r that there are no prime
numbersǨ �r that prime numbers are made of
sweet buttermilkǨ

�n example of a Ǯ�roofǯ using a false proposition is
this famous (probably apocryphal)story about the
philosopher and mathematician �ertrand �ussell
(as retold by �aymond Smullyan in his classic
book�hat is the name of this boo�ǫȌ� �ussell once
told a dinner audience that “a false proposition
implies any proposition.” �e was challenged to
show that if ʹ ൅ ʹ ൌ ͷ (clearly a false statement)
then he could prove that he (�ussell) is the �ope.
�ussell then responded as follows:


iven that ʹ ൅ ʹ ൌ ͷ. Subtract ͵ from both
sides to get ͳ ൌ ʹ. �ow consider the following
statements: �he �ope and � are two. �ut ʹ ൌ ͳ.
So the �ope and � are one. �hus � am the �opeǨ

�ote that starting from a false statement we end
up with a nonsensical statement that “�ussell is
the �opeǯ. �hus something is wrong with the
argument.

�athematicians avoid contradictions like the
plague (even more than writers avoid clicheƴs).
�his is the reason why we insist on proofs in
mathematicsȄto convince ourselves that all the
statements are true. Figure ͸ is a design where
“math” rotates to read the word “truth.”

Sometimes contradictions lead to paradoxes (or
apparent paradoxes). �aradoxes are contradictory
statements and have to be false. �ut since false
statements are not allowed, there has to be some
�law in the reasoning. �esolving these paradoxes
helps us understand the �laws in our reasoning.
�nd more importantly, thinking about these
paradoxical situations is fun.

�efore we get into some serious selfǦcontradictory
paradoxes here is one that goes back a while Ȃ and
one that turns out not to be a paradox if
addressed with the right mathematical tools.

�e��ǯ� P������
�enoǯs paradoxes are about the impossibility of
motion. � simple example is as follows. Suppose
you have to go from a point � to a point �, which
are 1 km distant from each other. �hen �irst you
have to reach halfway, a distance of half a km away.
�hen you have to go frommid point of �� (say ଵሻܣ
to �. �gain you have to �irst go half the distance
ܤଵܣ which is oneǦfourth of a km. �ext we have to
go half the remaining distance, that is, oneǦeighth
of a km. 
oing on in this fashion, �eno asserted
that we can never reach �. �n other words, it is
impossible to go from � to �. �hus �eno showed
by this argument that motion is impossibleǨ

�hat is wrong with �enoǯs argumentǫ �enoǯs
paradoxes forced philosophers and
mathematicians to think of the continuum and
concepts such as in�inite series. �n our example
above, we �ind that
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statement �. �ut the proof of the statement �
involves the statement �. � good example of
circular reasoning is in the book Catch ʹʹ,

“�ou mean thereǯs a catchǫ”
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absolute simplicity of this clause of CatchǦʹʹ
and let out a respectful whistle.

“�hatǯs some catch, that CatchǦʹʹ,” he observed.

“�tǯs the best there is,” �oc �aneeka agreed.

�r in the character �ippler in the �ittle �rince
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൫௔௖ ൯

ଶ ൅ ቀ௕
௖ ቁ

ଶ
ൌ ͳ, or ܽଶ ൅ ܾଶ ൌ ܿଶ, as re�uired.
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Figure �. $ chain rotation amEigram for the word “ouroEoros” reSresenting the idea of a snake eating its own tail.
The idea of the ouroEoros has recurred throughout histor\ ² such as the image in the middle� which is from a late

medieYal alchemical manuscriSt (courtes\ :ikimedia &ommons).
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Figure �. $n amEigram aEout the relationshiS of math to truth
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�� ����lu����
�ith this we come to the end of our �irst part of our reconnaissance of the domain of paradoxes
in mathematics. �here is a lot more to comeǥbut for that you will have to wait for part ʹ of this article.

So with that, we should let you know that though it may seem that way, this sentence is surely not the last
word on the topic. �his is. �o. �his. �ord.

����e� �� �uzzle: �f you place a mirror vertically along the middle of the s�uiggles you will see two
words Ȃ �xiom and �heorem (as follows).

Figure 11. Solution to 3u]]le 1

�ol. Ͷ, �o. 1, �arch ʹͲ1ͷ ∣ �t �ight �ngles ͹

PUNYA MISHRA, when not pondering visual paradoxes, is professor of educational technology at Michigan 
State University. GAURAV BHATNAGAR, when not reflecting on his own self, is 6enior 9ice-President at 
(ducomp 6olutions /td. They have known each other since they were students in high-school. 

Over the years, they have shared their love of art, mathematics, bad jokes, puns, nonsense verse and other 
forms of deep-play with all and sundry. Their talents however, have never truly been appreciated by their 
family and friends. 

(ach of the ambigrams presented in this article is an original design created by Punya with mathematical input 
from *aurav (e[cept when mentioned otherwise). Please contact Punya if you want to use any of these designs 
in your own work. 

To you, dear reader, we have a simple request. Do share your thoughts, comments, math poems, or any bad 
Mokes you have made with the authors. Punya can be reached at punya@msu.edu or through his website 
at http://punyamishra.com and Gaurav can be reached at bhatnagarg@gmail.com and his website at 
http://gbhatnagar.com/.
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Figure �. $ ¶Sroof E\ Sictures· of the sum of the geometric series and how an infinite numEer of additions can lead
to a finite sum

Figure �. $ Yisual =eno 3arado[� where “=eno” graduall\ transforms to “=ero” ² where the letter “n” changes steS
E\ steS to the letter “r.” ,s =eno eYer =ero"

which follows from the formula for the sum
of the geometric series. Figure ͺ shows
a “proof by pictures” of this series. �e can
use the concept of in�inite series to resolve
�enoǯs paradox, by noting that the sum of an
in�inite number of additions can be a
�inite �uantity.

Figure ͻ shows an ambigrammatic approach to
�enoǯs paradoxǢ here the word �eno tends to �eroǨ

�n the 
eometric Series, the in�inite sum is a �inite
�uantity. �he ambigram of Figure 1Ͳ is about the
word “Finite” written in such a manner that it
becomes the symbol for in�inityǨ

Figure 1�. Finite reflection in a circle. The word finite reSeats in a circle ² and is also reflected in a mirror. Taken
together the main image and its reflection from the s\mEol for infinit\.
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This is not the first sentence of this article.

The above sentence can be both true and false. It is clearly the first 
sentence of this article. So it is false, because it says it is not the first 
sentence! But because this is part 2 of our article on Paradoxes, if we 
regard both parts as one article, it is true! We leave it to you to resolve 
this paradox.

In the first part of this two-part exposition on paradoxes in 
mathematics, we introduced the idea of self-reference, the nature of 
mathematical truth, the problems with circular proofs and explored 
Zeno’s Paradox. In this part we delve deeper into the challenges of 
determining the 'truth value' of pathological self-referential statements, 
visual paradoxes and more.

Self - Reference and Russell’s Paradox
There is a class of paradoxes that arise from objects referring to 
themselves. The classic example is Epimenides Paradox (also called the 
Liar Paradox). Epimenides was a Cretan, who famously remarked  
“All Cretans are liars.” So did Epimenides tell the truth? If he did, then 
he must be a liar, since he is a Cretan, and so he must be lying! If he 
was lying, then again it is not the case that all Cretans are liars, and so 

Paradoxes:  
     Part 2 of 2

Of Art and Mathematics

Punya Mishra & Gaurav Bhatnagar

Keywords: Paradox, Circular proof, Zeno's paradoxes, Russell's paradox, 
Epimenides liar paradox, Self-reference, Contradiction, Escher, Penrose, 
Jourdain's paradox, Triangle, Necker's Cube
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Figure 4 shows an ambigram for asymmetry, 
but it is symmetric. So in some sense, this design 
is a �isual contradiction! But it is not a very 
elegant solution Ϋ which in some strange way is 
appropriate. 

�ecall the idea of self-similarity from our earlier 
column, where a part of a figure is similar to ȋor 
a scaled-down version ofȌ the original. �ere is an 
ambigram for similarity which is made up of small 
pieces of self (Figure 5). Should we consider this 
to be self-similarityǫ
Another set of visual paradoxes have to do with 
the problems that arise when one attempts 
to represent a world of 3 dimensions in 2 
dimensions Ȃ such as in a painting or drawing. 
The �utch artist M.�. �scher was the master at 
this. His amazing paintings often explore the 
paradoxes and impossible figures that can be 
created through painting. For instance, he took 
the mathematician and physicist Roger Penrose’s 
image of an impossible triangle and based some of 
his work on it (Figure 6).

Another interesting example is the sentence: “This 
sentence has two ewrrors.” Does this indeed have 
two errors? Is the error in counting errors itself 
an error? If that is the case, then does it have two 
errors or just one? 

What is intriguing about the examples above is 
that they somehow arise because the sentences 
refer to themselves. The paradox was summarized 
in the mathematical context by Russell, and has 
come to be known as Russell’s paradox. Russell’s 
paradox concerns sets. Consider a set R of all 
sets that do not contain themselves. Then Russell 
asked, does this set R contain itself? If it does 
contain itself, then it is not a member of R. But if it 
is not a member of R, then it does contain itself.

Russell’s Paradox was resolved by banning such 
sets from mathematics. Recall that one thinks of a 
set as a �ell-defined collection of objects. Here by 
well-defined we mean that given an element a and 
a set A, we should be able to determine whether 
a belongs to A or not. So Russell’s paradox shows 
that a set of all sets that do not contain themselves 
is not well-defined. By creating a distinction 
between an element and a set, such situations do 
not arise. You could have sets whose members are 
other sets, but an element of a set cannot be the 
set itself. Thus, in some sense, self-reference is not 
allowed in Set Theory!

Visual contradictions
Next, we turn to graphic contradictions, where 
we use ambigrams to create paradoxical 
representations. 

Figure 4: A somewhat inelegant design that captures 
a visual parado[ ï the word “asymmetry” written in a 

symmetric manner.

Figure 5: Here is an ambigram for Similarity which is made up of small pieces of Self. 
Should we consider this to be self-similarity?
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� variant of this ȋthat does not employ self-
reference) is also known as the Card paradox or 
Jourdain’s paradox (named after the person who 
developed it). In this version, there is a card with 
statements printed on both sides. The front says, 
“The statement on the other side of this card is 
TRUE,” while the back says, “The statement on the 
other side of this card is FALSE.” Think through it, 
and you will find that trying to assign a truth value 
to either of them leads to a paradox!

Figure 3 combines the liar’s paradox and 

ourdainǯs paradox ȋin its new ambigram one-
sided version) into one design. 

he must be telling the truth, and that cannot be! 
Figure 1 is an ambiguous design that can be read 
as both “true” and “false.”

The artwor� of M.�. �scher ȋsuch as his famous 
illustration that shows two hands painting each 
other) provides many visual examples of such 
phenomena. Another older analogy or picture is 
that of the ouroboros—an image of a snake eating 
its own tail (how’s that for a vicious circle!). An 
ambigram of ouroboros was featured in our first 
article on paradoxes. 

Here is another variation of the Liar Paradox. 
Consider the following two sentences that differ 
by just one word. 

 This sentence is true.

 This sentence is false. 

The first is somewhat inconse�uential Ȃ apart 
from the apparent novelty of a sentence speaking 
to its own truth value. 

The second, however, is pathological. The truth 
and falsity of such pathologically self-referential 
statements is hard to pin down. Trying to assign 
a truth value to it leads to a contradiction, just 
like in the Liar Paradox. Figure 2 is a rotational 
ambigram that reads “true” one way and “false” 
when rotated 180 degrees. 

Figure 1. An ambiguous design that  
can be read as both “true” and “false.”

Figure 2: Rotational ambigram that reads “False”  
one way and “True” the other. (This design was 

inspired by a design by John Longdon.)

Figure 3: Two paradoxes in one. Inside the circle is the 
ambigram for the pair of sentences “This sentence 
is True/This sentence is False”. The outer circle is 

an original design for the Jourdain two-sided-card 
paradox, which can, due to the magic of ambigrams, 

be reduced to being printed on just one side!
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These images oscillate between two opposite 
incommensurable interpretations, somewhat like 
the liar paradoxes we had described earlier. Figure 
10 is another ambiguous shape that can be read 
two ways! What is cool about that design is that 
each of these shapes is built from tiny s�uares that 
read the word “cube.”

These representations fool our minds to see things 
in ways that are strange or impossible. These are 
visual paradoxes, or illusions, as reflected in the 
design in Figure 11, which is the word “illusions” 
represented using an impossible font (akin to the 
Penrose Triangle or Necker Cube).

Figure 11: An impossible typeface based on the Necker Cube and 
Penrose Triangle. Spelling the word “Illusions.”

Figure 10: The impossible cube? In this design the word “cube” is used to 
create a series of shapes that oscillate between one reading and the other. 

Mathematical Truth and the Real World
One of the most fundamental puzzles of the 
philosophy of mathematics has to do with the fact 
that though mathematical truths appear to have a 
compelling inevitability (from axiom to theorem 
via proofȌ and find great applicability in the world, 
there is little we know of why this is the case. 
The physicist Wigner called it the “unreasonable 
effectiveness of mathematics” to explain, 
understand and predict the phenomena in the real 
world. The �uestion is how something that exists 
in some kind of an “ideal” world can connect to 
and make sense in the “real” world we live in. 
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Another famous impossible object is the 
“impossible cube.” The impossible cube builds 
on the manner in which simple line drawings of 
͵� shapes can be �uite ambiguous. 	or instance, 
see the wire-frame cube below ȋalso �nown as 
the Necker Cube). This image usually oscillates 
between two different orientations. For instance, 
in Figure 9, is the person shown sitting on the 
cube or magically stuck to the ceiling inside it?

�s homage to M.�. �scher, we present below 
(Figure 7) a rotational ambigram of his name 
written using an impossible font!

As it turns out, the Penrose Triangle is also 
connected to another famous geometrical shape, 
the MÚbius strip. � MÚbius strip has many 
interesting properties, one of which is that it has 
only one side and one edge (Figure 8).

Figure 7: Rotationally symmetric ambigram for M.C. 
Escher written using an impossible alphabet style.

Puzzle: What is the relationship 
between a Penrose Triangle and a 
MÚbius stripǫ

Figure 8. An unending reading of the word Möbius 
irrespective of how you are holding the paper!

Figure 6. A Penrose Triangle – a visual 
representation of an object that cannot 

exist in the real world.

Figure 9. The Necker Cube – and how it can lead to two different 3D 
interpretations and through that to an impossible or paradoxical object.
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compelling inevitability (from axiom to theorem 
via proofȌ and find great applicability in the world, 
there is little we know of why this is the case. 
The physicist Wigner called it the “unreasonable 
effectiveness of mathematics” to explain, 
understand and predict the phenomena in the real 
world. The �uestion is how something that exists 
in some kind of an “ideal” world can connect to 
and make sense in the “real” world we live in. 
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Figure 12 maps the word “ideal” to “real.” Is the 
ideal real Ȃ and real �ust a mere reflection of the 
ideal? Or vice versa?
Clearly this is not an issue that will be resolved 
anytime soon Ȃ but it is intriguing to thin� about. 
So with that, we bid adieu, but before we depart 
we would li�e to bring you the following self-
serving public announcement. 

This is the last sentence of the article. No this is. 
This.Figure 12: The Ideal-Real ambigram, 

representing the paradoxical thought that the 
5eal world often appears to be a reflection of 

the Ideal mathematical theory!
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PUNYA MISHRA, when not pondering visual paradoxes, is professor of educational technology at Michigan 
State University. GAURAV BHATNAGAR, when not reflecting on his own self, is 6enior 9ice-President at 
Educomp Solutions Ltd. They have known each other since they were students in high-school. 

Over the years, they have shared their love of art, mathematics, bad jokes, puns, nonsense verse and other 
forms of deep-play with all and sundry. Their talents, however, have never truly been appreciated by their 
family and friends. 

Each of the ambigrams presented in this article is an original design created by Punya with mathematical 
input from Gaurav (except when mentioned otherwise). Please contact Punya if you want to use any of 
these designs in your own work. 

To you, dear reader, we have a simple request. Do share your thoughts, comments, math poems, or any 
bad jokes you have made with the authors. Punya can be reached at punya@msu.edu or through his 
website at http://punyamishra.com and Gaurav can be reached at bhatnagarg@gmail.com and his website 
at http://gbhatnagar.com/.

Answer to Puzzle:
The �Úbius Strip and the Penrose Triangle ha�e an interesting relationship to each other. �f �ou 
trace a line around the Penrose Triangle, �ou �ill get a ͹-loop �Úbius strip. �.C. Escher used this 
propert� in some of his most famous etchings. 
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